

Daily Tutorial Sheet-5 Level-1	Daily Tutorial Sheet-5	Level-1
--------------------------------	------------------------	---------

61.(A) I: If conjugate base (anion) is smaller, it is very effectively solvated.

II: As +I effect of R alkyl groups increases, acid strength decreases.

III: Alkynes are more acidic than alkenes and alkanes due to sp-hybrid electron withdrawing carbon atom.

(C) (D)

63.(B)
$$RCH_2COOH \xrightarrow{1. P/Br_2} RCH-COOH \xrightarrow{NH_3} R-CHCOOH (Y)$$

Br NH_2

64.(D) Option (D) is correct in general except when CH₃OH is considered as it is more acidic than H₂O.

65.(C)
$$CH_3COOH \xrightarrow{SOCl_2} CH_3COCI \xrightarrow{C_6H_6} Ph - C - CH_3 \xrightarrow{HCN} Ph - C^* - CH_3 \xrightarrow{COOH} COOH$$

* Chiral centre

*α -hydroxy acid

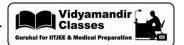
 \Rightarrow A, B are correct

66.(C) I:
$$CH_3NC \xrightarrow{H_3O^+} CH_3NH_2 + HCOOH$$
 II: $CHCl_3 \xrightarrow{NaOH} HCOOH$

III :
$$CCl_4 \xrightarrow{H_3O^+} CO_2 + H_2O$$

$$\begin{array}{c} O \\ \parallel \\ HC \equiv CH + CH_3 - C - OH \longrightarrow H_2C = CH - O - C - CH_3 \end{array}$$

67.(B)
$$CH_3CHO + 2CH_3COOH \leftarrow H_3O^+ \\ (Y)$$
 $H_3C - HC \leftarrow CH_3COOH \\ (X)$ $OCOCH_3$ (Ethylidene diacetate)


O O
$$\parallel$$
 O \parallel 68.(D) $CH_3 - C - OH(aq) \Longrightarrow H_{aq}^+ + CH_3 - C - O^-$ (conjugate base)

69.(A) This is Cross-Claisen condensation.

CH₃COOEt loses α – H and C₆H₅COOEt loses EtO- to give a β -keto ester.

$$\begin{array}{c} C_{6}H_{5}-C - OEt + CH_{2} - COOEt & \xrightarrow{EtONa} \\ H \end{array} \\ C_{6}H_{5}-C - CH_{2} - COOEt & \xrightarrow{OH^{-}} \\ C_{6}H_{5}-C - CH_{2} - COOEt & \xrightarrow{OH^{-}} \\ C_{6}H_{5}-COCH_{3} & \xrightarrow{A \\ -CO_{2}} \end{array}$$

- **70.(ACD)** (A) HCOOH (pK $_a$ = 3.77) is stronger acid than CH $_3$ COOH(pK $_a$ = 4.78) as CH $_3$ group is an ERG (acid weakening)
 - **(B)** $HCOOH \xrightarrow{PCl_5} H-COCl \longrightarrow CO+HCl$ [Formyl chloride is unstable at room temperature]
 - (C) HCOOH $\xrightarrow{\text{H}_2\text{SO}_4}$ $\text{H}_2\text{O} + \text{CO}$

(D) $HCOOH + [Ag(NH_3)_2]^+OH^- \longrightarrow CO_2 + H_2O + Ag$

(HCOOH is easily oxidised even by mild oxidising agents such as Tollen's reagent and Fehling solution)

71.(C)
$$H_3C - C = CH \xrightarrow{CH_3MgBr} CH_4 + CH_3 - C = C - MgBr \xrightarrow{1.CO_2} CH_3 - C = C - COOH$$

72.(A) Reactivity of carboxylic acid derivatives is proportional to the stability of leaving group in acyl (Nu⁻) substitution: which depends upon basicity of leaving species.

"A weaker base is a good leaving group".

The order of basicity of leaving ion is: $\begin{array}{c} O \\ || \\ Cl^- < R-C-O^- < -OR' < NH_2^- \\ \text{(weak base)} \end{array}$

Hence Cl^- is batter leaving group and NH_2^- is a poor leaving group. Accordingly RCOCl will be most reactive and amide the least one.

- **73.(D)** Remember this as fact that Urea (NH₂CONH₂) is used to destroy excess HNO₂, during diazotization.
- **74.(ABC)** * CH₃CN≡ Acetonitrile or Ethanenitrile is the correct name.

*
$$NH_2$$
 - C - OH_2 (Urea : a diamide)

75.(A) $CH_3CHO \xrightarrow{\text{(EtO)}_3AI} CH_3 - C - OC_2H_5$ (A) (Tishchenko reaction)

$$\begin{array}{c|c} O \\ CH_3-C-OC_2H_5 & \xrightarrow{1.\,EtONa} Claisen\text{-condensation} \end{array}$$

"one ester molecule loses $\ \alpha$ -H and other loses alkoxide to give $\ \mbox{-keto}$ ester.

$$CH_{3} - C - OEt + CH_{2}COOEt \xrightarrow{1. EtONa} CH_{3} - C - CH_{2} - C - CH_{2} - C - OEt$$

$$(H)$$

$$\beta - keto ester$$
(Acetoacetic ester)